Carnosine Alleviates Knee Osteoarthritis and Promotes Synoviocyte Protection via Activating the Nrf2/HO-1 Signaling Pathway: An In-Vivo and In-Vitro Study

Author:

Busa PrabhakarORCID,Lee Sing-Ong,Huang Niancih,Kuthati Yaswanth,Wong Chih-Shung

Abstract

The most common joint disease in the elderly is knee osteoarthritis (OA). It is distinguished by cartilage degradation, subchondral bone loss, and a decrease in joint space. We studied the effects of carnosine (CA) on knee OA in male Wistar rats. OA is induced by anterior cruciate ligament transection combined with medial meniscectomy (ACLT+MMx) method and in vitro studies are conducted in fibroblast-like synoviocyte cells (FLS). The pain was assessed using weight-bearing and paw-withdrawal tests. CA supplementation significantly reduced pain. The enzyme-linked immunosorbent assay (ELISA) method was used to detect inflammatory proteins in the blood and intra-articular synovial fluid (IASF), and CA reduced the levels of inflammatory proteins. Histopathological studies were performed on knee-tissue samples using toluidine blue and hematoxylin and eosin (H and E) assays. CA treatment improved synovial protection and decreased cartilage degradation while decreasing zonal depth lesions. Furthermore, Western blotting studies revealed that the CA-treated group activated nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase (HO-1) and reduced the expression of cyclooxygenase-2 (COX-2). FLS cells were isolated from the knee joints and treated with IL-1β to stimulate the inflammatory response and increase reactive oxygen species (ROS). The matrix metalloproteinase protein (MMP’s) levels (MMP-3, and MMP-13) were determined using the reverse transcription-polymerase chain reaction (RT-PCR), and CA treatment reduced the MMP’s expression levels. When tested using the 2′,7′-dicholorodihydrofluroscene diacetate (DCFDA) assay and the 5,5′,6,6′-tetracholoro-1,1′,3,3′-tertraethylbenzimidazolcarboc janine iodide (JC-1) assay in augmented ROS FLS cells, CA reduced the ROS levels and improved the mitochondrial membrane permeability. This study’s investigation suggests that CA significantly alleviates knee OA both in vitro and in vivo.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3