Aniba canelilla (Kunth) Mez (Lauraceae) Essential Oil: Effects on Oxidative Stress and Vascular Permeability

Author:

Cardoso Eloise K. Serrão,Kubota Karen,Luz Diandra Araújo,Mendes Paulo Fernando S.ORCID,Figueiredo Pablo Luis B.ORCID,Lima Rafael RodriguesORCID,Maia Cristiane S. FerrazORCID,Fontes-Júnior Enéas AndradeORCID

Abstract

The present study aimed to investigate the antioxidant activity of Aniba canelilla (kunth) Mez (Lauraceae) essential oil (AcEO), exploring its potential for prevention and/or treatment of oxidative stress and associated inflammatory process. With this aim, Wistar rats (n = 6/group) were pre-treated intraperitoneally with saline (0.9%) or AcEO (2 or 5 mg/kg) for 5 days. One hour after the last dose, inflammation and oxidative stress were induced by carrageenan (0.3 mg/kg; ip.) administration. Total antioxidant capacity, reduced glutathione (GSH) and lipid peroxidation levels, protein concentration, and leukocyte migration were evaluated in peritoneal fluid. Lipid peroxidation was also evaluated in plasma. Carrageenan strongly reduced the peritoneal antioxidant capacity and GSH concentration, increasing peritoneal and plasma lipid peroxidation. It also promoted increased plasma leakage and leukocyte migration. Treatment with AcEO (2 and 5 mg/kg), whose major constituent was 1-nitro-2-phenylethane (77.5%), increased the peritoneal antioxidant capacity and GSH concentrations, and reduced lipid peroxidation, both peritoneal and plasma, thus inhibiting the carrageenan-induced oxidative imbalance. AcEO also reduced the carrageenan-induced plasma leakage and leukocyte migration. These data demonstrate the AcEO antioxidant activity and its ability to modulate plasma leakage and leukocyte migration, confirming its potential for treating diseases associated with inflammation and oxidative stress.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference54 articles.

1. Radical-free biology of oxidative stress;Jones;Am. J. Physiol. Cell Physiol.,2008

2. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy;Forman;Nat. Rev. Drug Discov.,2021

3. Determination of Parameters of Oxidative Stress in vitro Models of Neurodegenerative Diseases-A Review

4. Role of Glutathione Peroxidases and Peroxiredoxins in Free Radical-Induced Pathologies;Sharapov;Biochemistry,2021

5. Oxidative stress and autophagy: The clash between damage and metabolic needs;Filomeni;Cell Death Differ.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3