Neuroprotection and Disease Modification by Astrocytes and Microglia in Parkinson Disease

Author:

Takahashi ShinichiORCID,Mashima Kyoko

Abstract

Oxidative stress and neuroinflammation are common bases for disease onset and progression in many neurodegenerative diseases. In Parkinson disease, which is characterized by the degeneration of dopaminergic neurons resulting in dopamine depletion, the pathogenesis differs between hereditary and solitary disease forms and is often unclear. In addition to the pathogenicity of alpha-synuclein as a pathological disease marker, the involvement of dopamine itself and its interactions with glial cells (astrocyte or microglia) have attracted attention. Pacemaking activity, which is a hallmark of dopaminergic neurons, is essential for the homeostatic maintenance of adequate dopamine concentrations in the synaptic cleft, but it imposes a burden on mitochondrial oxidative glucose metabolism, leading to reactive oxygen species production. Astrocytes provide endogenous neuroprotection to the brain by producing and releasing antioxidants in response to oxidative stress. Additionally, the protective function of astrocytes can be modified by microglia. Some types of microglia themselves are thought to exacerbate Parkinson disease by releasing pro-inflammatory factors (M1 microglia). Although these inflammatory microglia may further trigger the inflammatory conversion of astrocytes, microglia may induce astrocytic neuroprotective effects (A2 astrocytes) simultaneously. Interestingly, both astrocytes and microglia express dopamine receptors, which are upregulated in the presence of neuroinflammation. The anti-inflammatory effects of dopamine receptor stimulation are also attracting attention because the functions of astrocytes and microglia are greatly affected by both dopamine depletion and therapeutic dopamine replacement in Parkinson disease. In this review article, we will focus on the antioxidative and anti-inflammatory effects of astrocytes and their synergism with microglia and dopamine.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3