H2O2 and Ca2+ Signaling Crosstalk Counteracts ABA to Induce Seed Germination

Author:

Cheng Mengjie,Guo Yanliang,Liu Qing,Nan Sanwa,Xue Yuxing,Wei ChunhuaORCID,Zhang Yong,Luan Feishi,Zhang XianORCID,Li HaoORCID

Abstract

Seed germination is a critical stage and the first step in the plant’s life cycle. H2O2 and Ca2+ act as important signal molecules in regulating plant growth and development and in providing defense against numerous stresses; however, their crosstalk in modulating seed germination remains largely unaddressed. In the current study, we report that H2O2 and Ca2+ counteracted abscisic acid (ABA) to induce seed germination in melon and Arabidopsis by modulating ABA and gibberellic acid (GA3) balance. H2O2 treatment induced a Ca2+ influx in melon seeds accompanied by the upregulation of cyclic nucleotide-gated ion channel(CNGC) 20, which encodes a plasma membrane Ca2+-permeable channel. However, the inhibition of cytoplasmic free Ca2+ elevation in the melon seeds and Arabidopsis mutant atcngc20 compromised H2O2-induced germination under ABA stress. CaCl2 induced H2O2 accumulation accompanied by the upregulation of respiratory burst oxidase homologue(RBOH) D and RBOHF in melon seeds with ABA pretreatment. However, inhibition of H2O2 accumulation in the melon seeds and Arabidopsis mutant atrbohd and atrbohf abolished CaCl2-induced germination under ABA stress. The current study reveals a novel mechanism in which H2O2 and Ca2+ signaling crosstalk offsets ABA to induce seed germination. H2O2 induces Ca2+ influx, which in turn increases H2O2 accumulation, thus forming a reciprocal positive-regulatory loop to maintain a balance between ABA and GA3 and promote seed germination under ABA stress.

Funder

Earmarked Fund for Modern Agroindustry Technology Research System of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3