Markers of Endothelial Dysfunction Are Attenuated by Resveratrol in Preeclampsia

Author:

Bueno-Pereira Thaina OmiaORCID,Bertozzi-Matheus MarianaORCID,Zampieri Gabriela Morelli,Abbade Joelcio FranciscoORCID,Cavalli Ricardo C.,Nunes Priscila Rezeck,Sandrim Valeria CristinaORCID

Abstract

Preeclampsia (PE) is characterized by great endothelial dysfunction, decreased nitric oxide (NO) bioavailability, and higher levels of arginase activity. In the present study, we investigated the potential modulatory effects of trans-resveratrol (RSV) on arginase and endothelial dysfunction biomarkers in endothelial cells exposed to plasma from patients with PE and healthy pregnant (HP) women, and umbilical arteries from patients with PE. Human umbilical vein endothelial cells (HUVECs) were incubated with pooled plasma from 10 HP or 10 PE pregnant women and RSV; umbilical arteries from patients with PE were incubated with RSV; intracellular NO and total reactive oxygen species (ROS) levels were assessed using a probe that interacted with these radicals; total arginase activity was evaluated measuring the urea produced; total antioxidant capacity was measured using the ferric reduction ability power (FRAP) assay; and endothelial dysfunction biomarkers were assessed using qPCR in endothelial cells and umbilical arteries. RSV increased NO levels and decreased total arginase activity in endothelial cells incubated with plasma from patients with PE. In addition, RSV increased total antioxidant capacity and downregulated endothelial dysfunction biomarkers, such as intercellular adhesion molecule-1 (ICAM-1), von Willebrand factor (vWF), and Caspase-3, (CASP-3), in endothelial cells and umbilical arteries from PE patients. RSV treatment positively modulated the L-arginine–NO pathway, decreased arginase activity, and increased antioxidant capacity, in addition to downregulating endothelial dysfunction biomarkers.

Funder

Fundaçao de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvol-vimento Científico e Tecnológico

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3