Changes in Phenolic Acids and Antioxidant Properties during Baking of Bread and Muffin Made from Blends of Hairless Canary Seed, Wheat, and Corn

Author:

Abdel-Aal El-Sayed M.,Rabalski Iwona

Abstract

Phenolic acids are the major polyphenols in cereal grains and they undergo changes in their composition and structure during processing. This study investigated changes in phenolic acids and antioxidant properties during baking of bread and muffin made from hairless canary seed (HCS), Phalaris canariensis L., alone or in blends with corn and wheat. The changes were monitored after dry mixing, dough/batter formation, and oven baking. Phenolic acids were quantified in products using HPLC and antioxidant activity was based on DPPH, ABTS, and ORAC assays. Eight phenolic acids were primarily present in the bound fraction extracts, while only a few phenolic acids were detected in the free or unbound fraction extracts. Ferulic was the dominant phenolic acid in wheat, corn, and HCS followed by p-coumaric acid but the latter was extremely high in HCS compared to wheat and corn. After baking, bound phenolic acids decreased in breads and muffins, while the unbound phenolic acids increased. Dough preparation resulted in about 5–13% reductions in bound ferulic acid in addition to 2–9% after oven baking with a total reduction of about 10–20% subject to bread formulation. On the contrary unbound ferulic acid increased by 48–307% after dough preparation and 138–225% after oven baking with a total increase 273–495%. Similarly, muffin-making process resulted in 26–30% reductions in bound ferulic acid after batter preparation and 4–7% after oven baking with reductions of 34–37% in muffins, while the unbound ferulic acid increased by about 35–105% and 9–29%, respectively, with a total increase 47–116%. The baking process resulted in improved DPPH, ABTS, and ORAC antioxidant activities in breads and muffins despite the initial reductions after dough preparation. In general, baking process resulted in tangible increases in unbound phenolic acids which eventually could improve their bioavailability and bioactivity.

Funder

Agriculture and Agriculture-Food Canada

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3