Cellular Uptake of Epigallocatechin Gallate in Comparison to Its Major Oxidation Products and Their Antioxidant Capacity In Vitro

Author:

Alfke Julian,Esselen Melanie

Abstract

Depletion of reactive oxygen species and reduction of oxidative stress have been identified as key parameters in the prevention of cellular aging. In previous in vitro studies, the tea catechin epigallocatechin gallate (EGCG) was found to have both pro- and antioxidant properties, disregarding the low stability under cell culture conditions. Besides hydrogen peroxide, theasinensin dimers amongst other oxidation products are formed. Exact quantities, cellular uptake and antioxidant capacities of these dimeric oxidation products remain unknown. Via high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (MS/MS), formation kinetics and cellular uptake of EGCG and its major oxidation products are quantified. The antioxidant capacity is determined on a cellular level using a modified dichlorofluorescein (DCF) approach. As a first result, oxidation product quantities of up to 21 µM each are measured after incubation of 50 µM EGCG. While EGCG is taken up equimolarly, its major oxidation products are accumulated in hepatocarcinoma HepG2 cells at millimolar concentrations, especially theasinensin A (TSA). Lastly, the oxidation products show higher antioxidant properties than the monomer EGCG. In correlation with cellular uptake, TSA displays the highest capacity of all tested analytes. The findings reveal the strong influence of EGCG oxidation products on its bioactivity in vitro.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3