Chondroprotective Effects of 4,5-Dicaffeoylquinic Acid in Osteoarthritis through NF-κB Signaling Inhibition

Author:

Jang Goeun,Lee Seul Ah,Hong Joon Ho,Park Bo-Ram,Kim Do Kyung,Kim Chun Sung

Abstract

Osteoarthritis (OA) is characterized by cartilage degradation, inflammation, and pain. The dicaffeoylquinic acid (diCQA) isomer, 4,5-diCQA, exhibits antioxidant activity and various other health-promoting benefits, but its chondroprotective effects have yet to be elucidated. In this study, we aimed to investigate the chondroprotective effects of 4,5-diCQA on OA both in vitro and in vivo. Primary rat chondrocytes were pre-treated with 4,5-diCQA for 1 h before stimulation with interleukin (IL)-1β (5 ng/mL). The accumulation of nitrite, PGE2, and aggrecan was observed using the Griess reagent and ELISA. The protein levels of iNOS, COX-2, MMP-3, MMP-13, ADMATS-4, MAPKs, and the NF-κB p65 subunit were measured by Western blotting. In vivo, the effects of 4,5-diCQA were evaluated for 2 weeks in a destabilization of the medial meniscus (DMM)-surgery-induced OA rat model. 4,5-diCQA significantly inhibited IL-1β-induced expression of nitrite, iNOS, PGE2, COX-2, MMP-3, MMP-13, and ADAMTS-4. 4,5-diCQA also decreased the IL-1β-induced degradation of aggrecan. It also suppressed the IL-1β-induced phosphorylation of MAPKs and translocation of the NF-κB p65 subunit to the nucleus. These findings indicate that 4,5-diCQA inhibits DMM-surgery-induced cartilage destruction and proteoglycan loss in vivo. 4,5-diCQA may be a potential therapeutic agent for the alleviation of OA progression. In this study, diclofenac was set to be administered once every two days, but it showed an effect on OA. These results may be used as basic data to suggest a new dosing method for diclofenac.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3