Prevention of Testicular Damage by Indole Derivative MMINA via Upregulated StAR and CatSper Channels with Coincident Suppression of Oxidative Stress and Inflammation: In Silico and In Vivo Validation

Author:

Afsar Tayyaba,Razak Suhail,Trembley Janeen H.ORCID,Khan KhushbukhatORCID,Shabbir MariaORCID,Almajwal Ali,Alruwaili Nawaf W.ORCID,Ijaz Muhammad Umar

Abstract

Cis-diamminedichloroplatinum (II) (CDDP) is a widely used antineoplastic agent with numerous associated side effects. We investigated the mechanisms of action of the indole derivative N’-(4-dimethylaminobenzylidene)-2-1-(4-(methylsulfinyl) benzylidene)-5-fluoro-2-methyl-1H-inden-3-yl) acetohydrazide (MMINA) to protect against CDDP-induced testicular damage. Five groups of rats (n = 7) were treated with saline, DMSO, CDDP, CDDP + MMINA, or MMINA. Reproductive hormones, antioxidant enzyme activity, histopathology, daily sperm production, and oxidative stress markers were examined. Western blot analysis was performed to access the expression of steroidogenic acute regulatory protein (StAR) and inflammatory biomarker expression in testis, while expression of calcium-dependent cation channel of sperm (CatSper) in epididymis was examined. The structural and dynamic molecular docking behavior of MMINA was analyzed using bioinformatics tools. The construction of molecular interactions was performed through KEGG, DAVID, and STRING databases. MMINA treatment reversed CDDP-induced nitric oxide (NO) and malondialdehyde (MDA) augmentation, while boosting the activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD) in the epididymis and testicular tissues. CDDP treatment significantly lowered sperm count, sperm motility, and epididymis sperm count. Furthermore, CDDP reduced epithelial height and tubular diameter and increased luminal diameter with impaired spermatogenesis. MMINA rescued testicular damage caused by CDDP. MMINA rescued CDDP-induced reproductive dysfunctions by upregulating the expression of the CatSper protein, which plays an essential role in sperm motility, MMINA increased testosterone secretion and StAR protein expression. MMINA downregulated the expression of NF-κB, STAT-3, COX-2, and TNF-α. Hydrogen bonding and hydrophobic interactions were predicted between MMINA and 3β-HSD, CatSper, NF-κβ, and TNFα. Molecular interactome outcomes depicted the formation of one hydrogen bond and one hydrophobic interaction between 3β-HSD that contributed to its strong binding with MMINA. CatSper also made one hydrophobic interaction and one hydrogen bond with MMINA but with a lower binding affinity of -7.7 relative to 3β-HSD, whereas MMINA made one hydrogen bond with NF-κβ residue Lys37 and TNF-α reside His91 and two hydrogen bonds with Lys244 and Thr456 of STAT3. Our experimental and in silico results revealed that MMINA boosted the antioxidant defense mechanism, restored the levels of fertility hormones, and suppressed histomorphological alterations.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3