Abstract
Alzheimer’s disease (AD) is the most frequent age-associated disease with no treatments that can prevent, delay, slow, or stop its progression. Thus, new approaches to drug development are needed. One promising approach is the use of phenotypic screening assays that can identify compounds that have therapeutic efficacy in target pathways relevant to aging and cognition, as well as AD pathology. Using this approach, we identified the flavanone sterubin, from Yerba santa (Eriodictyon californicum), as a potential drug candidate for the treatment of AD. Sterubin is highly protective against multiple initiators of cell death that activate distinct death pathways, potently induces the antioxidant transcription factor Nrf2, and has strong anti-inflammatory activity. Moreover, in a short-term model of AD, it was able to prevent decreases in short- and long-term memory. In order to better understand which key chemical functional groups are essential to the beneficial effects of sterubin, we compared the activity of sterubin to that of seven closely related flavonoids in our phenotypic screening assays. Surprisingly, only sterubin showed both potent neuroprotective activity against multiple insults as well as strong anti-inflammatory activity against several distinct inducers of inflammation. These effects correlated directly with the ability of sterubin to strongly induce Nrf2 in both nerve and microglial cells. Together, these results define the structural requirements underlying the neuroprotective and anti-inflammatory effects of sterubin and they provide the basis for future studies on new compounds based on sterubin.
Funder
National Institutes of Health
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Reference39 articles.
1. Back to the future with phenotypic screening;ACS Chem. Neurosci.,2014
2. Using plants as a source of potential therapeutics for the treatment of Alzheimer’s disease;Yale J. Biol. Med.,2020
3. The search for anti-oxytotic/ferroptotic compounds in the plant world;Br. J. Pharmacol.,2021
4. How fisetin reduces the impact of age and disease on CNS function;Front. Biosci.,2015
5. Preventing and treating neurological disorders with the flavonol fisetin;Brain Plast.,2020
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献