Resistance to Obesity in SOD1 Deficient Mice with a High-Fat/High-Sucrose Diet

Author:

Sato AtsushiORCID,Shiraishi YasunagaORCID,Kimura ToyokazuORCID,Osaki AyumuORCID,Kagami Kazuki,Ido Yasuo,Adachi Takeshi

Abstract

Metabolic syndrome (Mets) is an important condition because it may cause stroke and heart disease in the future. Reactive oxygen species (ROSs) influence the pathogenesis of Mets; however, the types of ROSs and their localization remain largely unknown. In this study, we investigated the effects of SOD1, which localize to the cytoplasm and mitochondrial intermembrane space and metabolize superoxide anion, on Mets using SOD1 deficient mice (SOD1−/−). SOD1−/− fed on a high-fat/high-sucrose diet (HFHSD) for 24 weeks showed reduced body weight gain and adipose tissue size compared to wild-type mice (WT). Insulin secretion was dramatically decreased in SOD1−/− fed on HFHSD even though blood glucose levels were similar to WT. Ambulatory oxygen consumption was accelerated in SOD1−/− with HFHSD; however, ATP levels of skeletal muscle were somewhat reduced compared to WT. Reflecting the reduced ATP, the expression of phosphorylated AMPK (Thr 172) was more robust in SOD1−/−. SOD1 is involved in the ATP production mechanism in mitochondria and may contribute to visceral fat accumulation by causing insulin secretion and insulin resistance.

Funder

JSPS KAKENHI Grant

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3