Vitamin D Mitigates Hyperglycemia-Induced Cognition Decline in Danio rerio (Zebrafish) through the Activation of Antioxidant Mechanisms

Author:

Uthaiah Chinnappa A.ORCID,Devaru Nandini C.,Shivakumar Nandini H.,R Rajalakshmi,Madhunapantula SubbaRao V.ORCID

Abstract

Hyperglycemia contributes to the development of cognition impairment and related disorders, induces oxidative stress in neuronal cells; thereby, impairs normal signaling mechanisms involved in cognition processes. Studies have shown a significant decrease in the vitamin D in individuals with hyperglycemia and cognition impairment. But whether supplementing vitamin D has any beneficiary impact on mitigating hyperglycemia-induced cognition impairment is unknown. We have first tested the impact of hyperglycemia on the induction of cognition deficiency in a zebrafish model. Next, the molecular mechanisms related to oxidative stress, which are deregulated in hyperglycemic zebrafish brains, have been explored. Subsequently, the impact of supplementing the water with vitamin D and a known activator of nuclear factor erythroid-2 related factor 2 (Nrf2) i.e., sulforaphane (SFN) on learning and memory functions were assessed. We showed a significant increase in the oxidative stress in the brain tissue of zebrafish residing in hyperglycemic water (111 mM glucose). Addition of vitamin D and SFN increased Nrf2, but differentially modulated its target genes (NQO1, SOD, GPx etc) activity in zebrafish and neuronal cell lines thereby improved the hyperglycemia-induced decline of cognition impairment. Mechanistically, vitamin D binds to the Keap1 protein; thereby, interfering with its binding to Nrf2, which leads to the activation of antioxidant mechanisms in the cells. In summary, reducing the oxidative stress through vitamin D treatment is a possible option for controlling the cognition impairment in diabetic population, but studies testing this possibility in clinical trials are currently needed.

Funder

JSS Academy of Higher Education & Research

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3