Impact of Maternal and Offspring Dietary Zn Supplementation on Growth Performance and Antioxidant and Immune Function of Offspring Broilers

Author:

Wang Yuanyuan,Zhang Ling,Xu Yibin,Ding Xiaoqing,Wang Yongxia,Fu AikunORCID,Zhan Xiuan

Abstract

The current study investigated the effects of the maternal Zn source in conjunction with their offspring’s dietary Zn supplementation on the growth performance, antioxidant status, Zn concentration, and immune function of the offspring. It also explored whether there is an interaction between maternal Zn and their offspring’s dietary Zn. One-day-old Lingnan Yellow-feathered broilers (n = 800) were completely randomized (n = 4) between two maternal dietary supplemental Zn sources [maternal Zn–Gly (oZn) vs. maternal ZnSO4 (iZn)] × two offspring dietary supplemental Zn doses [Zn-unsupplemented control diet (CON), the control diet + 80 mg of Zn/kg of diet as ZnSO4]. oZn increased progeny ADG and decreased offspring mortality across all periods, especially during the late periods (p < 0.05). The offspring diet supplemented with Zn significantly improved ADG and decreased offspring mortality over the whole period compared with the CON group (p < 0.05). There were significant interactions between the maternal Zn source and offspring dietary Zn with regards to progeny mortality during the late phase and across all phases as a whole (p < 0.05). Compared with the iZn group, the oZn treatment significantly increased progeny liver and serum Zn concentrations; antioxidant capacity in the liver, muscle, and serum; and the IgM concentration in serum; while also decreasing progeny serum IL-1 and TNF-α cytokine secretions (p < 0.05). Similar results were observed when the offspring diet was supplemented with Zn compared with the CON group; moreover, adding Zn to the offspring diet alleviated progeny stress by decreasing corticosterone levels in the serum when compared to the CON group (p < 0.05). In conclusion, maternal Zn–Gly supplementation increased progeny performance and decreased progeny mortality and stress by increasing progeny Zn concentration, antioxidant capacity, and immune function compared with the same Zn levels from ZnSO4. Simultaneously, Zn supplementation in the progeny’s diet is necessary for the growth of broilers.

Funder

Anhui Youth Natural Science Foundation

Zhejiang Province Major Agricultural Technologies Collaborative Extension Plan

China Agriculture Research System of MOF and MARA

Zhejiang Province Key R&D Program

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3