Abstract
Glioblastoma multiforme (GBM) is a cancer of largely unknown cause that leads to a 5-year survival rate of approximately 7% in the United States. Current treatment strategies are not effective, indicating a strong need for the development of novel therapies. In this study, the outcomes of sinularin, a marine-derived product, were evaluated against GBM. Our cellular studies using GBM cells revealed that sinularin induces cell death. The measured half maximal inhibitory concentrations (IC50) values ranged from 30 to 6 μM at 24–72 h. Cell death was induced via the generation of ROS leading to mitochondria-mediated apoptosis. This was evidenced by annexin V/propidium iodine staining and an upregulation of cleaved forms of the pro-apoptotic proteins caspase 9, 3, and PARP, and supported by CellROXTM Green, MitoSOXTM Red, and CM-H2DCFDA staining methods. In addition, we observed a downregulation of the antioxidant enzymes SOD1/2 and thioredoxin. Upon treatment with sinularin at the ~IC50 concentration, mitochondrial respiration capacities were significantly reduced, as shown by measuring the oxygen consumption rates and enzymatic complexes of oxidative phosphorylation. Intriguingly, sinularin significantly inhibited indicators of angiogenesis such as vessel tube formation, cell migration, and cell mobility in human umbilical vein endothelial cells or the fusion cell line EA.Hy926. Lastly, in a transgenic zebrafish model, intersegmental vessel formation was also significantly inhibited by sinularin treatment. These findings indicate that sinularin exerts anti-brain cancer properties that include apoptosis induction but also antiangiogenesis.
Funder
Ministry of Science and Technology, Taiwan
Kaohsiung Armed Forces General Hospital of Taiwan
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献