Insights into the Mechanisms of Lactobacillus acidophilus Activity against Entamoeba histolytica by Using Thiol Redox Proteomics

Author:

Sarid Lotem,Zanditenas Eva,Ye JunORCID,Trebicz-Geffen Meirav,Ankri SergeORCID

Abstract

Amebiasis is an intestinal disease transmitted by the protist parasite, Entamoeba histolytica. Lactobacillus acidophilus is a common inhabitant of healthy human gut and a probiotic that has antimicrobial properties against a number of pathogenic bacteria, fungi, and parasites. The aim of this study was to investigate the amebicide activity of L. acidophilus and its mechanisms. For this purpose, E. histolytica and L. acidophilus were co-incubated and the parasite’s viability was determined by eosin dye exclusion. The level of ozidized proteins (OXs) in the parasite was determined by resin-assisted capture RAC (OX–RAC). Incubation with L. acidophilus for two hours reduced the viability of E. histolytica trophozoites by 50%. As a result of the interaction with catalase, an enzyme that degrades hydrogen peroxide (H2O2) to water and oxygen, this amebicide activity is lost, indicating that it is mediated by H2O2 produced by L. acidophilus. Redox proteomics shows that L. acidophilus triggers the oxidation of many essential amebic enzymes such as pyruvate: ferredoxin oxidoreductase, the lectin Gal/GalNAc, and cysteine proteases (CPs). Further, trophozoites of E. histolytica incubated with L. acidophilus show reduced binding to mammalian cells. These results support L. acidophilus as a prophylactic candidate against amebiasis.

Funder

Israel Science Foundation

Ministry of Science and Technology, Israel

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference66 articles.

1. Regulation of Virulence of Entamoeba histolytica

2. Antibody dependent cellular cytotoxicity in experimental intestinal & hepatic amoebiasis;Gill;Indian J. Med. Res.,1988

3. Molecular weight analysis of Entamoeba histolytica antigens recognized by IgG and IgM antibodies in the sera of patients with amoebiasis;Schulz;Trop. Med. Parasitol.,1987

4. Oxidative stress resistance genes contribute to the pathogenic potential of the anaerobic protozoan parasite, Entamoeba histolytica

5. Endoplasmic Reticulum Stress-Sensing Mechanism Is Activated in Entamoeba histolytica upon Treatment with Nitric Oxide

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3