Abstract
Curcumin, due to its antioxidant, antibacterial, anti-inflammatory, and antitumoral activity, has attracted huge attention in applications in many fields such as pharmacy, medicine, nutrition, cosmetics, and biotechnology. The stability of curcumin-based products and preservation of antioxidant properties are still challenges in practical applications. Stability and antioxidant properties were studied for curcumin encapsulated in O/W microemulsion systems and three related gel microemulsions. Only biodegradable and biocompatible ingredients were used for carriers: grape seed oil as oily phase, Tween 80, and Plurol® Diisostearique CG as a surfactant mix, and ethanol as a co-solvent. For the gel microemulsions, water-soluble polymers, namely Carbopol® 980 NF, chitosan, and sodium hyaluronate were used. The influence of UVC irradiation and heat treatment on the degradation kinetics of curcumin in the formulations was studied. Because of the antioxidant character of the microemulsion oily phase, the possibility of a synergistic effect between grape seed oil and curcumin was explored. In this study, the high efficiency of the studied drug delivery systems to ensure protection from external degradative factors was confirmed. Also, the influence of the encapsulation in microemulsion and derived gel microemulsion systems on the antioxidant capacity curcumin was studied, and a synergistic effect with vegetal oil was demonstrated.
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献