Vitamin D Deficiency, Excessive Gestational Weight Gain, and Oxidative Stress Predict Small for Gestational Age Newborns Using an Artificial Neural Network Model

Author:

Perichart-Perera OtiliaORCID,Avila-Sosa Valeria,Solis-Paredes Juan MarioORCID,Montoya-Estrada AraceliORCID,Reyes-Muñoz EnriqueORCID,Rodríguez-Cano Ameyalli M.ORCID,González-Leyva Carla P.,Sánchez-Martínez Maribel,Estrada-Gutierrez GuadalupeORCID,Irles ClaudineORCID

Abstract

(1) Background: Size at birth is an important early determinant of health later in life. The prevalence of small for gestational age (SGA) newborns is high worldwide and may be associated with maternal nutritional and metabolic factors. Thus, estimation of fetal growth is warranted. (2) Methods: In this work, we developed an artificial neural network (ANN) model based on first-trimester maternal body fat composition, biochemical and oxidative stress biomarkers, and gestational weight gain (GWG) to predict an SGA newborn in pregnancies with or without obesity. A sensibility analysis to classify maternal features was conducted, and a simulator based on the ANN algorithm was constructed to predict the SGA outcome. Several predictions were performed by varying the most critical maternal features attained by the model to obtain different scenarios leading to SGA. (3) Results: The ANN model showed good performance between the actual and simulated data (R2 = 0.938) and an AUROC of 0.8 on an independent dataset. The top-five maternal predictors in the first trimester were protein and lipid oxidation biomarkers (carbonylated proteins and malondialdehyde), GWG, vitamin D, and total antioxidant capacity. Finally, excessive GWG and redox imbalance predicted SGA newborns in the implemented simulator. Significantly, vitamin D deficiency also predicted simulated SGA independently of GWG or redox status. (4) Conclusions: The study provided a computational model for the early prediction of SGA, in addition to a promising simulator that facilitates hypothesis-driven constructions, to be further validated as an application.

Funder

Instituto Nacional de Perinatología

Fondo Sectorial de Investigación en Salud y Seguridad Social

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3