NRF2-Dependent Placental Effects Vary by Sex and Dose following Gestational Exposure to Ultrafine Particles

Author:

Behlen Jonathan C.ORCID,Lau Carmen H.,Pendleton Drew,Li Yixin,Hoffmann Aline Rodrigues,Golding Michael C.,Zhang Renyi,Johnson Natalie M.ORCID

Abstract

Exposure to ultrafine particles (UFPs, PM0.1) during pregnancy triggers placental oxidative stress and inflammation, similar to fine PM (PM2.5). The Nrf2 gene encodes a redox-sensitive transcription factor that is a major regulator of antioxidant and anti-inflammatory responses. Disruption of NRF2 is known to substantially enhance PM2.5-driven oxidant and inflammatory responses; however, specific responses to UFP exposure, especially during critical windows of susceptibility such as pregnancy, are not fully characterized; To investigate the role of NRF2 in regulating maternal antioxidant defenses and placental responses to UFP exposure, wildtype (WT) and Nrf2−/− pregnant mice were exposed to either low dose (LD, 100 µg/m3) or high dose (HD, 500 µg/m3) UFP mixture or filtered air (FA, control) throughout gestation; Nrf2−/− HD-exposed female offspring exhibited significantly reduced fetal and placental weights. Placental morphology changes appeared most pronounced in Nrf2−/− LD-exposed offspring of both sexes. Glutathione (GSH) redox analysis revealed significant increases in the GSH/GSSG ratio (reduced/oxidized) in WT female placental tissue exposed to HD in comparison with Nrf2−/− HD-exposed mice. The expression of inflammatory cytokine genes (Il1β, Tnfα) was significantly increased in Nrf2−/− placentas from male and female offspring across all exposure groups. Genes related to bile acid metabolism and transport were differentially altered in Nrf2−/− mice across sex and exposure groups. Notably, the group with the most marked phenotypic effects (Nrf2−/− HD-exposed females) corresponded to significantly higher placental Apoa1 and Apob expression suggesting a link between placental lipid transport and NRF2 in response to high dose UFP exposure; Disruption of NRF2 exacerbates adverse developmental outcomes in response to high dose UFP exposure in female offspring. Morphological effects in placenta from male and female offspring exposed to low dose UFPs also signify the importance of NRF2 in maternal–fetal response to UFPs.

Funder

National Institute of Environmental Health Sciences

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3