Genome-Wide Identification of the Bcl-2 Associated Athanogene (BAG) Gene Family in Solanum lycopersicum and the Functional Role of SlBAG9 in Response to Osmotic Stress

Author:

Jiang Hailong,Ji Yurong,Sheng Jiarong,Wang Yan,Liu Xiaoya,Xiao Peixiang,Ding HaidongORCID

Abstract

The Bcl-2-associated athanogene (BAG) proteins are a family of multi-functional group of co-chaperones regulators, modulating diverse processes from plant growth and development to stress response. Here, 10 members of SlBAG gene family were identified based on the available tomato (Solanum lycopersicum) genomic information and named as SlBAG1-10 according to their chromosomal location. All SlBAG proteins harbor a characteristic BAG domain, categorized into two groups, and SlBAG4, SlBAG7, and SlBAG9 of group I contain a plant-specific isoleucine glutamine (IQ) calmodulin-binding motif located in the N terminus. The quantitative real-time PCR expression analysis revealed that these SlBAG genes had organ-specific expression patterns and most SlBAG genes were differentially expressed in multiple abiotic stresses including drought, salt, high temperature, cold, and cadmium stress as well as abscisic acid and H2O2. In addition, heterologous overexpression of SlBAG9 increased the sensitivity of Arabidopsis to drought, salt, and ABA during seed germination and seedling growth. The decreased tolerance may be due to the downregulation of stress-related genes expression and severe oxidative stress. The expression levels of some stress and ABA-related genes, such as ABI3, RD29A, DREB2A, and P5CS1, were significantly inhibited by SlBAG9 overexpression under osmotic stress. Meanwhile, the overexpression of SlBAG9 inhibited the expression of FSD1 and CAT1 under stress conditions and the decreased levels of superoxide dismutase and catalase enzyme activities were detected accompanying the trends in the expression of both genes, which resulted in H2O2 accumulation and lipid peroxidation. Taken together, these findings lay a foundation for the future study of the biological function of SlBAG genes in tomato.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3