Uremic Toxin Indoxyl Sulfate Impairs Hydrogen Sulfide Formation in Renal Tubular Cells

Author:

Lu Chien-LinORCID,Liao Chun-Hou,Wu Wen-BinORCID,Zheng Cai-MeiORCID,Lu Kuo-Cheng,Ma Ming-Chieh

Abstract

Hydrogen sulfide (H2S) was the third gasotransmitter to be recognized as a cytoprotectant. A recent study demonstrated that exogenous supplementation of H2S ameliorates functional insufficiency in chronic kidney disease (CKD). However, how the H2S system is impaired by CKD has not been elucidated. The uremic toxin indoxyl sulfate (IS) is known to accumulate in CKD patients and harm the renal tubular cells. This study therefore treated the proximal tubular cells, LLC-PK1, with IS to see how IS affects H2S formation. Our results showed that H2S release from LLC-PK1 cells was markedly attenuated by IS when compared with control cells. The H2S donors NaHS and GYY-4137 significantly attenuated IS-induced tubular damage, indicating that IS impairs H2S formation. Interestingly, IS downregulated the H2S-producing enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST), and these effects could be reversed by inhibition of the IS receptor, aryl hydrocarbon receptor (AhR). As transcription factor specificity protein 1 (Sp1) regulates the gene expression of H2S-producing enzymes, we further showed that IS significantly decreased the DNA binding activity of Sp1 but not its protein expression. Blockade of AhR reversed low Sp1 activity caused by IS. Moreover, exogenous H2S supplementation attenuated IS-mediated superoxide formation and depletion of the cellular glutathione content. These results clearly indicate that IS activates AhR, which then attenuates Sp1 function through the regulation of H2S-producing enzyme expression. The attenuation of H2S formation contributes to the low antioxidant defense of glutathione in uremic toxin-mediated oxidative stress, causing tubular cell damage.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3