Aging-Related Decline of Autophagy in Patients with Atrial Fibrillation—A Post Hoc Analysis of the ATHERO-AF Study

Author:

Versaci Francesco,Valenti Valentina,Forte MaurizioORCID,Cammisotto VittoriaORCID,Nocella Cristina,Bartimoccia Simona,Schirone LeonardoORCID,Schiavon Sonia,Vecchio Daniele,D’Ambrosio LucaORCID,Spinosa Giulia,D’Amico AlessandraORCID,Chimenti IsottaORCID,Violi Francesco,Frati GiacomoORCID,Pignatelli PasqualeORCID,Sciarretta Sebastiano,Pastori DanieleORCID,Carnevale RobertoORCID

Abstract

Background: Aging is an independent risk factor for cardiovascular diseases. The autophagy process may play a role in delaying aging and improving cardiovascular function in aging. Data regarding autophagy in atrial fibrillation (AF) patients are lacking. Methods: A post hoc analysis of the prospective ATHERO-AF cohort study, including 150 AF patients and 150 sex- and age-matched control subjects (CS), was performed. For the analysis, the population was divided into three age groups: <50–60, 61–70, and >70 years. Oxidative stress (Nox2 activity and hydrogen peroxide, H2O2), platelet activation (PA) by sP-selectin and CD40L, endothelial dysfunction (nitric oxide, NO), and autophagy parameters (P62 and ATG5 levels) were assessed. Results: Nox2 activity and H2O2 production were higher in the AF patients than in the CS; conversely, antioxidant capacity was decreased in the AF patients compared to the CS, as was NO production. Moreover, sP-selectin and CD40L were higher in the AF patients than in the CS. The autophagy process was also significantly impaired in the AF patients. We found a significant difference in oxidative stress, PA, NO production, and autophagy across the age groups. Autophagy markers correlated with oxidative stress, PA, and endothelial dysfunction in both groups. Conclusions: This study provides evidence that the autophagy process may represent a mechanism for increased cardiovascular risk in the AF population.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3