Physiological and Molecular Responses of Vitis vinifera cv. Tempranillo Affected by Esca Disease

Author:

García José Antonio,Garrido InmaculadaORCID,Ortega Alfonso,del Moral JerónimoORCID,Llerena José Luis,Espinosa FranciscoORCID

Abstract

Esca is a multi-fungal disease affecting grapevines. The objective of the study was to evaluate the physiological and molecular response of the grapevine cv. Tempranillo to esca disease, carried out in a vineyard under Mediterranean climatic conditions in western Spain. The photosynthetic pigments in the leaves decreased, with a strong decrease in the photosynthetic efficiency. The proline content increased significantly in the early stages of affected leaves, being possibly involved in the maintenance of lipid peroxidation levels in leaves, which do not increase. The phenol, flavonoid, and phenylpropanoid content decreased in esca-affected leaves, as does the total antioxidant capacity (FRAP), while the polyphenol oxidase (PPO) activity suffers a strong increase with the development of the disease. In affected grapes, the lipid peroxidation and the total phenol content decrease, but not the anthocyanin content. The ascorbate pool decreases with the disease and with time. On the other hand, pool GSH + GSSG is lower in affected leaves, but increases with time. These alterations show a clear change in the redox homeostasis. The expression of genes phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), superoxide dismutase (SOD), and chalcone synthase (ChaS1 and ChaS3) become considerably higher in response to esca, being even higher when the infection time increases. The alteration of AsA and GSH levels, phenolic compounds, PPO activity, proline content, and FRAP, together with the increase of the PAL, PPO, SOD,ChaS1, and ChaS3 gene expression, are clearly implicated in the esca response in plants. The expression of these genes, similar to the PPO activity, can be used as markers of state in the development of the disease.

Funder

Government of Extremadura

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3