The Uncoupling Proteins: A Systematic Review on the Mechanism Used in the Prevention of Oxidative Stress

Author:

Hirschenson Jonathan,Melgar-Bermudez Emiliano,Mailloux Ryan J.ORCID

Abstract

Mitochondrial uncoupling proteins (UCP) 1-3 fulfill many physiological functions, ranging from non-shivering thermogenesis (UCP1) to glucose-stimulated insulin release (GSIS) and satiety signaling (UCP2) and muscle fuel metabolism (UCP3). Several studies have suggested that UCPs mediate these functions by facilitating proton return to the matrix. This would decrease protonic backpressure on the respiratory chain, lowering the production of hydrogen peroxide (H2O2), a second messenger. However, controlling mitochondrial H2O2 production to prevent oxidative stress by activating these leaks through these proteins is still enthusiastically debated. This is due to compelling evidence that UCP2/3 fulfill other function(s) and the inability to reproduce findings that UCP1-3 use inducible leaks to control reactive oxygen species (ROS) production. Further, other studies have found that UCP2/3 may serve as Ca2+. Therefore, we performed a systematic review aiming to summarize the results collected on the topic. A literature search using a list of curated keywords in Pubmed, BIOSIS Citation Index and Scopus was conducted. Potentially relevant references were screened, duplicate references eliminated, and then literature titles and abstracts were evaluated using Rayyan software. A total of 1101 eligible studies were identified for the review. From this total, 416 studies were evaluated based on our inclusion criteria. In general, most studies identified a role for UCPs in preventing oxidative stress, and in some cases, this may be related to the induction of leaks and lowering protonic backpressure on the respiratory chain. However, some studies also generated evidence that UCP2/3 may mitigate oxidative stress by transporting Ca2+ into the matrix, exporting lipid hydroperoxides, or by transporting C-4 metabolites. Additionally, some showed that activating UCP1 or 3 can increase mitochondrial ROS production, even though there is still augmented protection from oxidative stress. Conclusion: Overall, most available studies demonstrate that UCPs, particularly UCP2/3, prevent oxidative stress. However, the mechanism utilized to do so remains elusive and raises the question that UCP2/3 should be renamed, since they may still not be true “uncoupling proteins”.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3