Signaling Pathways Associated with Chronic Wound Progression: A Systems Biology Approach

Author:

Basu PromaORCID,Martins-Green ManuelaORCID

Abstract

Previously we have shown that several oxidative stress-driven pathways in cutaneous chronic wounds are dysregulated in the first 48 h post-wounding. Here, we performed an RNASeq analysis of tissues collected up to day 20 after wounding, when we have determined full chronicity is established. Weighted Gene Correlation Network Analysis was performed in R segregating the genes into 14 modules. Genes in the modules significantly correlated (p < 0.05) to early and full chronicity were used for pathway analysis using pathfindR. In early chronicity, we observed enrichment of several pathways. Dysregulation of Ephrin/Eph signaling leads to growth cone collapse and impairs neuronal regeneration. Adra2b and Adra2a overexpression in early and full chronicity, respectively, decreased cAMP production and impaired re-epithelialization and granulation tissue formation. Several pathways involving a Smooth-muscle-actin (Acta1) were also enriched with Acta1 overexpression contributing to impaired angiogenesis. During full chronicity, the ‘JAK-STAT’ pathway was suppressed undermining host defenses against infection. Wnt signaling was also suppressed, impairing re-epithelialization and granulation tissue formation. Biomarkers of cancer such as overexpression of SDC1 and constitutive activation of ErbB2/HER2 were also identified. In conclusion, we show that during progression to full chronicity, numerous signaling pathways are dysregulated, including some related to carcinogenesis, suggesting that chronic wounds behave much like cancer. Experimental verification in vivo could identify candidates for treatment of chronic wounds.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3