Effect of Al Concentration on Basal Texture Formation Behavior of AZ-Series Magnesium Alloys during High-Temperature Deformation

Author:

Kim Kibeom1ORCID,Ji Yebin1,Kim Kwonhoo12ORCID,Park Minsoo3

Affiliation:

1. Department of Marine Design Convergence Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea

2. Department of Metallurgical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea

3. Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan

Abstract

Magnesium and its alloys have been restricted in their industrial applications due to problems related to their formability. To overcome this issue, controlling the crystallographic texture is important, and the texture formation mechanism should be investigated in relation to factors including deformation conditions and solute atoms. In particular, the effects of solute atoms on the texture formation behavior should be further analyzed because they can considerably affect the deformation behavior. Thus, in this study, to clarify the effect of aluminum concentration on the texture formation behavior and microstructure, high-temperature uniaxial compression tests were conducted on three types of AZ-series magnesium alloys (AZ31, AZ61, and AZ91). Compression was conducted at 673 K and 723 K, with strain rates of 0.05 s−1 and 0.005 s−1, up to a true strain of −1.0. Cylindrical specimens were prepared from a rolled plate that had a (0001) basal texture and was compressed parallel to the c-axis of the grains. Consequently, work softening and fiber texture formation were observed in all the specimens. During the deformation, the development of grain boundaries, which is a typical characteristic of continuous dynamic recrystallization (CDRX), was observed, and the (0001) texture was highly developed with increasing Al content. Although each alloy was associated with the same deformation conditions and mechanisms, the AZ31 alloy exhibited a non-basal texture component. The stacking fault energy contributed to the generation of slip systems and gliding, and it was seen as the main reason for texture variation.

Funder

Marine Designeering Education Research Group in Brain Korea 21 Program for Leading Universities and Students (BK21 FOUR) of the Ministry of Education

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3