Anelastic Effects in Fe–Ga and Fe–Ga-Based Alloys: A Review

Author:

Golovin Igor S.12

Affiliation:

1. National University of Science and Technology MISIS, Leninsky ave. 4, 119049 Moscow, Russia

2. Moscow Polytechnic University, B. Semenovskay 38, 107023 Moscow, Russia

Abstract

Fe–Ga alloys (GalFeNOLs) are the focus of attention due to their enhanced magneto-elastic properties, namely, magnetostriction in low saturation magnetic fields. In the last several years, special attention has been paid to the anelastic properties of these alloys. In this review, we collected and analyzed the frequency-, amplitude-, and temperature-dependent anelasticity in Fe–Ga and Fe–Ga-based alloys in the Hertz range of forced and free-decay vibrations. Special attention is paid to anelasticity caused by phase transitions: for this purpose, in situ neutron diffraction tests with the same heating or cooling rates were carried out in parallel with temperature dependencies measurements to control ctructure and phase transitions. The main part of this review is devoted to anelastic effects in binary Fe–Ga alloys, but we also consider ternary alloys of the systems Fe–Ga–Al and Fe–Ga–RE (RE—Rare Earth elements) to discuss similarities and differences between anelastic properties in Fe–Ga and Fe–Al alloys and effect of RE elements. We report and discuss several thermally activated effects, including Zener- and Snoek-type relaxation, several transient anelastic phenomena caused by phase transitions (D03 ↔ A2, D03 → L12, L12 ↔ D019, D019 ↔ B2, Fe13Ga9 → L12+Fe6Ga5 phases), and their influence on the above-mentioned thermally activated effects. We also report amplitude-dependent damping caused by dislocations and magnetic domain walls and try to understand the paradox between the Smith–Birchak model predicting higher damping capacity for materials with higher saturation magnetostriction and existing experimental results. The main attention in this review is paid to alloys with 17–20 and 25–30%Ga as the alloys with the best functional (magnetostriction) properties. Nevertheless, we provide information on a broader range of alloys from 6 to 45%Ga. Due to the limited space, we do not discuss other mechanical and physical properties in depth but focus on anelasticity. A short introduction to the theory of anelasticity precedes the main part of this review of anelastic effects in Fe–Ga and related alloys and unsolved issues are collected in summary.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3