Catalytic Steam-Assisted Pyrolysis of PET for the Upgrading of TPA

Author:

Song Kuntong12ORCID,Li Yi13,Zhang Ruiqi13,Wang Nan14,Liu Junhong1,Hou Wenxia13,Zhou Qing13,Lu Xingmei123

Affiliation:

1. Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

2. Sino Danish College, University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

4. Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China

Abstract

Compared with conventional pyrolysis, steam-assisted pyrolysis of polyethylene terephthalate (PET) can effectively eliminate char and upgrade terephthalic acid (TPA). However, during steam-assisted pyrolysis of PET, the degree of cracking still varies greatly, and while some of the product is excessively cracked to gas, the other part is still insufficiently cracked. In addition, these two types of products seriously affect the yield and purity of TPA. To further enhance the TPA, an attempt was made to reduce these impurities simultaneously by synergistic catalysis among the different components of the metal–acid catalyst. Through a series of experiments, Pt@Hzsm-5 was screened as the optimal catalyst. In the catalytic steam-assisted pyrolysis of PET, the optimum reaction temperature decreased to 400 °C, the calculated yield of TPA increased to 98.23 wt%, and the purity increased to 92.2%. The Pt@Hzsm-5 could be recycled three times with no significant decrease in the obtained yield of TPA. The catalytic mechanism of the Pt@Hzsm-5 was investigated through the analysis of the products and isotope tracing experiments. The Pt catalyzed the hydrogen transfer reaction between the water molecules and PET molecules, which inhibited the excessive cracking of TPA by improving the hydrogen transfer efficiency, reduced the generation of gaseous products, and improved the calculated yield of TPA. In contrast, the Hzsm-5 catalyzed the reaction of monovinyl ester cracking to TPA, effectively reducing the impurities in the solid product, increasing the olefin yield, and improving the purity of TPA. This discovery not only clarifies the synergistic catalytic effect of the Pt@Hzsm-5 in the steam-assisted pyrolysis of the PET reaction but also lays the foundation for further screening of other inexpensive metal–acid catalysts. This is of great significance to realize the industrial application of TPA preparation by PET pyrolysis.

Funder

National Key Research and Development Program of China

Strategic Priority Research Program of Chinese Academy of Science

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3