Surface Characterization of New β Ti-25Ta-Zr-Nb Alloys Modified by Micro-Arc Oxidation

Author:

Kuroda Pedro Akira Bazaglia1,Grandini Carlos Roberto2ORCID,Afonso Conrado Ramos Moreira1ORCID

Affiliation:

1. Materials Engineering Department (DEMa), Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil

2. Laboratório de Anelasticidade e Biomateriais, UNESP—Universidade Estadual Paulista, Bauru 17033-360, SP, Brazil

Abstract

The technique of surface modification using electrolytic oxidation, called micro-arc oxidation (MAO), has been used in altering the surface properties of titanium alloys for biomedical purposes, enhancing their characteristics as an implant (biocompatibility, corrosion, and wear resistance). The layer formed by the micro-arc oxidation process induces the formation of ceramic oxides, which can improve the corrosion resistance of titanium alloys from the elements in the substrate, enabling the incorporation of bioactive components such as calcium, phosphorus, and magnesium. This study aims to modify the surfaces of Ti-25Ta-10Zr-15Nb (TTZN1) and Ti-25Ta-20Zr-30Nb (TTZN2) alloys via micro-arc oxidation incorporating Ca, P, and Mg elements. The chemical composition results indicated that the MAO treatment was effective in incorporating the elements Ca (9.5 ± 0.4 %atm), P (5.7 ± 0.1 %atm), and Mg (1.1 ± 0.1 %atm), as well as the oxidized layer formed by micropores that increases the surface roughness (1160 nm for the MAO layer of TTZN1, 585 nm for the substrate of TTZN1, 1428 nm for the MAO layer of TTZN2, and 661 nm for the substrate of TTZN2). Regarding the phases formed, the films are amorphous, with low crystallinity (4 and 25% for TTZN2 and TTZN1, respectively). Small amounts of anatase, zirconia, and calcium carbonate were detected in the Ti-25Ta-10Zr-15Nb alloy.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior of Brazil

CNPq Universal Project

FAPESP

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3