Leaching of Copper Concentrate with Iodized Salts in a Saline Acid Medium: Part 1—Effect of Concentrations

Author:

Castellón César I.1,Taboada María E.1

Affiliation:

1. Departamento de Ingeniería Química y Procesos de Minerales, Facultad de Ingeniería, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile

Abstract

One of the main problems in processing chalcopyrite ore with hydrometallurgical methods is its refractoriness, which is due to the formation of a layer that inhibits the contact of the ore with the leaching solution, thus reducing the dissolution rate. The main objective of this paper is to evaluate the leaching potential of iodide ions in copper extraction from chalcopyrite concentrate in an acidic seawater medium. Leaching tests were carried out in glass reactors stirred at 45 °C. Parameters such as iodide salt concentration and acidity were evaluated in ranges of 0–5000 ppm and 0–1.0 M, respectively. According to the results obtained, adding iodide ions to a medium acid enhances the leaching kinetics in the chalcopyrite concentrate, observing that it improves copper extraction at low concentrations of 100 ppm KI compared to high concentrations of 5000 ppm KI. As a result, part of the iodide required to oxidize copper tends to sublimate or is associated with other ions producing iodinated compounds such as CuI. Copper extraction reached 45% within the first 96 h, while at 216 h, it reached an extraction of close to 70% copper. The recovery rate improves at potentials between 600 and 650 mV, while at lower potentials, the copper extraction decreases. The mineral surface was analyzed using SEM/EDS and XRD analyses for the identification of precipitates on the surface, finding porous elemental sulfur and precipitated jarosite. An increase in iodide ions improves the leaching kinetics in the chalcopyrite concentrate, observing that it improves copper extraction at low concentrations of 100 ppm KI compared to high concentrations of 5000 ppm KI. As a result, part of the iodide required to oxidize copper tends to sublimate or is associated with other ions producing iodinated compounds such as CuI. Copper extraction reached 45% within the first 96 h, while at 216 h, it reached an extraction of close to 70% copper. The recovery rate improves at potentials between 600 and 650 mV, while at lower potentials, the copper extraction decreases. The mineral surface was analyzed using SEM/EDS and XRD analyses for the identification of precipitates on the surface, finding porous elemental sulfur and precipitated jarosite.

Funder

CONICYT-PFCHA/National Doctoral Program

FONDECYT

scholarship PiensaMineria

Publisher

MDPI AG

Subject

General Materials Science

Reference88 articles.

1. Fundamental Study of Different Impurity Ions on Chalcopyrite Leaching Process;Wang;Met. Mine,2018

2. Leaching of copper from chalcopyrite using 50 L pressure oxidation autoclave;Lim;J. Korean Soc. Miner. Energy Resour. Eng.,2019

3. Pre feasibility study in hydrometallurgical treatment of low-grade chalcopyrite ores from Sarcheshmeh copper mine;Mokmeli;Hydrometallurgy,2020

4. Low-grade chalcopyrite ore, heap leaching or smelting recovery route?;Mokmeli;Hydrometallurgy,2022

5. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review;Watling;Hydrometallurgy,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3