Abstract
Grid impedance is an important parameter which affects the control performance of grid-connected power converters. Several methods already exist for optimizing the converter control system based on knowledge of grid impedance value. Grid impedance may change rapidly due to fault or disconnection of a transmission line. Therefore, online grid identification methods have been recently proposed to have up-to-date information about the grid impedance value. This is usually done by perturbing the converter output current and measuring the response in output voltage. However, any parallel converters connected to the same interface point will cause errors, since the measured current differs from the current that is flowing through the grid interface point. This paper points out challenges and errors in grid impedance identification, caused by parallel converters and their internal control functions, such as grid-voltage support. Experimental grid-impedance measurements are shown from the power hardware-in-the-loop setup developed at DNV-GL Flexible Power Grid Lab.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference16 articles.
1. 2018: Global Warming of 1.5C,2018
2. Unstable Operation of Photovoltaic Inverter From Field Experiences
3. Analysis of Resonance Between a VSC-HVDC Converter and the AC Grid
4. Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications;Suntio,2017
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献