A Simple and Robust Shock-Capturing Approach for Discontinuous Galerkin Discretizations

Author:

Choi Jae Hwan,Alonso Juan J.,van der Weide Edwin

Abstract

The discontinuous Galerkin (DG) method has become popular in Computational Fluid Dynamics mainly due to its ability to achieve high-order solution accuracy on arbitrary grids, its high arithmetic intensity (measured as the ratio of the number of floating point operations to memory references), and the use of a local stencil that makes scalable parallel solutions possible. Despite its advantages, several difficulties hinder widespread use of the DG method, especially in industrial applications. One of the major challenges remaining is the capturing of discontinuities in a robust and accurate way. In our previous work, we have proposed a simple shock detector to identify discontinuities within a flow solution. The detector only utilizes local information to sense a shock/discontinuity ensuring that one of the key advantages of DG methods, their data locality, is not lost in transonic and supersonic flows. In this work, we reexamine the shock detector capabilities to distinguish between smooth and discontinuous solutions. Furthermore, we optimize the functional relationships between the shock detector and the filter strength, and present it in detail for others to use. By utilizing the shock detector and the corresponding filtering-strength relationships, one can robustly and accurately capture discontinuities ranging from very weak to strong shocks. Our method is demonstrated in a number of two-dimensional canonical examples.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a Scalable Hierarchical High-order CFD Solver;AIAA Scitech 2021 Forum;2021-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3