On Fault Prediction for Wind Turbine Pitch System Using Radar Chart and Support Vector Machine Approach

Author:

Xiao Cheng,Liu Zuojun,Zhang Tieling,Zhang Lei

Abstract

In order to reduce operation and maintenance cost and improve fault diagnosis and detection accuracy for wind turbines, a study on advanced methods has been carried out. The purpose of this paper is to present a new method developed using radar chart and support vector machine (SVM) approach for fault diagnosis and prediction of wind turbine pitch system as it usually has a higher failure rate. In the study, the supervisory control and data acquisition (SCADA) system data are utilized as source data for SVM prediction. First of all, the characteristics of the indicator variable data collected by the SCADA system are analyzed, and the radar charts corresponding to the normal and faulty operation of the wind turbine pitch system are constructed using the indicator variable data. Secondly, the SVM method is used to extract the gray-level co-occurrence matrix (GLCM) features and histogram of oriented gradients (HOG) features of the radar charts, and the SVM classifier is trained. Then, the operational status is predicted, the classification effect is evaluated by the confusion matrix, and the prediction evaluation index is calculated. Thirdly, the support vector regression method is used to analyze the SCADA indicator variable data, the input and output of the regression model are determined, and the training prediction model is established, and the prediction accuracy of the test model is analyzed using the test sample data. Finally, the forecasting evaluation indexes obtained by the above two methods are compared. It proves that the proposed method using SVM to analyze the system radar charts has a higher prediction accuracy of 91.24% than the support vector regression method. The prediction accuracy is improved by 8.6%. Hence, it is verified that the new method using a radar chart and SVM approach has superiority over the support vector regression method.

Funder

National Natural Science Foundation of China

Hebei Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3