The Role of Supercapacitors in Regenerative Braking Systems

Author:

Partridge JuliusORCID,Abouelamaimen Dina Ibrahim

Abstract

A supercapacitor module was used as the energy storage system in a regenerative braking test rig to explore the opportunities and challenges of implementing supercapacitors for regenerative braking in an electric drivetrain. Supercapacitors are considered due to their excellent power density and cycling characteristics; however, the performance under regenerative braking conditions has not been well explored. Initially the characteristics of the supercapacitor module were tested, it is well known that the capacitance of a supercapacitor is highly dependent on the charge/discharge rate with a drop of up to 9% found here between the rated capacitance and the calculated value at a 100 A charge rate. It was found that the drop in capacitance was significantly reduced when a variable charge rate, representative of a regenerative braking test, was applied. It was also found that although supercapacitors have high power absorbing characteristics, the state-of-charge significantly impacts on the charging current and the power absorbing capacity of a supercapacitor-based regenerative braking system. This owed primarily to the current carrying capacity of the power electronic converters required to control the charge and discharge of the supercapacitor module and was found to be a fundamental limitation to the utilisation of supercapacitors in a regenerative braking system. In the worst cases this was found to impact upon the ability of the motor to apply the desired braking torque. Over the course of the tests carried out the overall efficiency was found to be up to 68%; however, the main source of loss was the motor. It was found that measurement of the state-of-charge using the rated capacitance significantly over-estimates the efficiency of the system.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3