Electric Vehicle Charging Load Forecasting: A Comparative Study of Deep Learning Approaches

Author:

Zhu Juncheng,Yang ZhileORCID,Mourshed MonjurORCID,Guo YuanjunORCID,Zhou Yimin,Chang Yan,Wei Yanjie,Feng Shengzhong

Abstract

Load forecasting is one of the major challenges of power system operation and is crucial to the effective scheduling for economic dispatch at multiple time scales. Numerous load forecasting methods have been proposed for household and commercial demand, as well as for loads at various nodes in a power grid. However, compared with conventional loads, the uncoordinated charging of the large penetration of plug-in electric vehicles is different in terms of periodicity and fluctuation, which renders current load forecasting techniques ineffective. Deep learning methods, empowered by unprecedented learning ability from extensive data, provide novel approaches for solving challenging forecasting tasks. This research proposes a comparative study of deep learning approaches to forecast the super-short-term stochastic charging load of plug-in electric vehicles. Several popular and novel deep-learning based methods have been utilized in establishing the forecasting models using minute-level real-world data of a plug-in electric vehicle charging station to compare the forecasting performance. Numerical results of twelve cases on various time steps show that deep learning methods obtain high accuracy in super-short-term plug-in electric load forecasting. Among the various deep learning approaches, the long-short-term memory method performs the best by reducing over 30% forecasting error compared with the conventional artificial neural network model.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

China Postdoctoral Science Foundation

Horizon 2020

Outstanding Young Researcher Innovation Fund of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3