Load Disaggregation Using Microscopic Power Features and Pattern Recognition

Author:

de Souza Wesley AngelinoORCID,Garcia Fernando Deluno,Marafão Fernando PinhabelORCID,da Silva Luiz Carlos Pereira,Simões Marcelo GodoyORCID

Abstract

A new generation of smart meters are called cognitive meters, which are essentially based on Artificial Intelligence (AI) and load disaggregation methods for Non-Intrusive Load Monitoring (NILM). Thus, modern NILM may recognize appliances connected to the grid during certain periods, while providing much more information than the traditional monthly consumption. Therefore, this article presents a new load disaggregation methodology with microscopic characteristics collected from current and voltage waveforms. Initially, the novel NILM algorithm—called the Power Signature Blob (PSB)—makes use of a state machine to detect when the appliance has been turned on or off. Then, machine learning is used to identify the appliance, for which attributes are extracted from the Conservative Power Theory (CPT), a contemporary power theory that enables comprehensive load modeling. Finally, considering simulation and experimental results, this paper shows that the new method is able to achieve 95% accuracy considering the applied data set.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flexible and configurable embedded electrical energy measurement system to acquire and process high-frequency features;HardwareX;2024-09

2. Smart Internet of Things Power Meter for Industrial and Domestic Applications;Applied Sciences;2024-08-28

3. Efficient Energy Optimization Techniques for Smart Grids Which Uses ML And DL Algorithms;2023 International Conference on Power Energy, Environment & Intelligent Control (PEEIC);2023-12-19

4. Gramian Angular Field and Recurrence Plots as Feature Engineering Techniques on Residential Appliances Labeling: A Comparative Analysis;2023 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT-LA);2023-11-06

5. Novel Algorithms for Filtering and Event Detection in Non-Intrusive Load Monitoring;2023 IEEE 13th International Workshop on Applied Measurements for Power Systems (AMPS);2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3