Abstract
Arsenic is a toxic element for humans and a major pollutant in drinking water. Natural and anthropogenic sources can release As into water bodies. The countries with the greatest arsenic contamination issues lack the affordable technology to attain the maximum permitted concentrations. Adsorption can be a highly efficient and low-cost option for advanced water treatment, and the development of new cheap adsorbents is essential to expand access to water with a safe concentration of arsenic. This paper aims to review the state of the art of arsenic adsorption from water in continuous mode and the latest progress in the regeneration and recovery of arsenic. The disposal of the exhausted bed is also discussed. Fixed-bed column tests conducted with novel adsorbents like binary metal oxides and biosorbents achieved the highest adsorption capacities of 28.95 mg/g and 74.8 mg/g, respectively. Iron-coated materials presented the best results compared to adsorbents under other treatments. High recovery rates of 99% and several cycles of bed regeneration were achieved, which can aggregate economic value for the process. Overall, further pilot-scale research is recommended to evaluate the feasibility of novel adsorbents for industrial purposes.
Funder
Fundação para a Ciência e a Tecnologia
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献