Application of Sustainable Prefabricated Wall Technology for Energy Efficient Social Housing

Author:

Chippagiri RavijanyaORCID,Gavali Hindavi R.,Ralegaonkar Rahul V.ORCID,Riley Mike,Shaw Andy,Bras AnaORCID

Abstract

Under the India “Housing for all” scheme, 20 million urban houses have to be constructed by 2022, which requires the rate of construction to be around 8000 houses/day. Previous results by the team show that present design methods for affordable buildings and structures in India need improvement. The challenges are the disposal of solid waste generated from agro-industrial activities and the energy peak demand in extremely hot and cold seasons. The development of bio-based urban infrastructure which can adapt to the climatic conditions has been proposed. Inclusion of sustainable materials such as agro-industrial by-products and insulation materials has resulted in effective environmental sustainability and climate change adaptability. Precast components are highlighted as a suitable solution for this purpose as well as to fulfil the need of mass housing. India has a lesser record in implementing this prefab technology when compared to a global view. For the first time, a novel and sustainable prefab housing solution is tested for scale-up using industrial waste of co-fired blended ash (CBA) and the results are presented here. A model house of real scale measuring 3 × 3 × 3 m3 was considered as a base case and is compared with 17 other combinations of model house with varying alignment of prefab panels. Comparison was made with commercially available fly ash brick and CBA brick with a conventional roof slab. A simulation study was conducted regarding cost and energy analysis for all the 18 cases. Various brick and panel compositions with CBA for housing were tried and the superior composition was selected. Similarly, 18 model houses of real scale were simulated, with different combinations of walls made of bricks or panels and different building orientations, to check the impact on energy peak cooling and cost. Results show that peak cooling load can be reduced by six times with bio-based prefab panels. Prefab construction can be considered for mass housing ranging above 100 housing units, each consisting of an area of 25 m2.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference34 articles.

1. India Populationhttps://www.worldometers.info/world-population/india-population/

2. Ministry of Housing & Urban Poverty Alleviation, Government of India, Pradhan Mantri Awas Yojana—Housing for All (Urban)—Credit Linked Subsidy Scheme;Gov. India,2017

3. Prefab technology a solution to existing challenges in construction sector of India—A Kerala perspective;Krishnanunny;Int. J. Pure Appl. Math.,2018

4. Adoption of prefabricated housing–the role of country context

5. New advancements, challenges and opportunities of multi-storey modular buildings – A state-of-the-art review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3