A Sensor for Characterisation of Liquid Materials with High Permittivity and High Dielectric Loss

Author:

Wang Chen,Liu XiaomingORCID,Huang Zhixiang,Yu Shuo,Yang Xiaofan,Shang XiaobangORCID

Abstract

This paper reports on a sensor based on multi-element complementary split-ring resonator for the measurement of liquid materials. The resonator consists of three split rings for improved measurement sensitivity. A hole is fabricated at the centre of the rings to accommodate a hollow glass tube, through which the liquid sample can be injected. Electromagnetic simulations demonstrate that both the resonant frequency and quality factor of the sensor vary considerably with the dielectric constant and loss tangent of the liquid sample. The volume ratio between the liquid sample and glass tube is 0.36, yielding great sensitivity in the measured results for high loss liquids. Compared to the design based on rectangular split rings, the proposed ring structure offers 37% larger frequency shifts and 9.1% greater resonant dips. The relationship between dielectric constant, loss tangent, measured quality factor and resonant frequency is derived. Experimental verification is conducted using ethanol solution with different concentrations. The measurement accuracy is calculated to be within 2.8%, and this validates the proposed approach.

Funder

the University Synergy Innovation Program of Anhui Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3