Developing Tree Mortality Models Using Bayesian Modeling Approach

Author:

Xie LuORCID,Chen Xingjing,Zhou Xiao,Sharma Ram P.ORCID,Li Jianjun

Abstract

The forest mortality models developed so far have ignored the effects of spatial correlations and climate, which lead to the substantial bias in the mortality prediction. This study thus developed the tree mortality models for Prince Rupprecht larch (Larix gmelinii subsp. principis-rupprechtii), one of the most important tree species in northern China, by taking those effects into account. In addition to these factors, our models include both the tree—and stand—level variables, the information of which was collated from the temporary sample plots laid out across the larch forests. We applied the Bayesian modeling, which is the novel approach to build the multi-level tree mortality models. We compared the performance of the models constructed through the combination of selected predictor variables and explored their corresponding effects on the individual tree mortality. The models precisely predicted mortality at the three ecological scales (individual, stand, and region). The model at the levels of both the sample plot and stand with different site condition (block) outperformed the other model forms (model at block level alone and fixed effects model), describing significantly larger mortality variations, and accounted for multiple sources of the unobserved heterogeneities. Results showed that the sum of the squared diameter was larger than the estimated diameter, and the mean annual precipitation significantly positively correlated with tree mortality, while the ratio of the diameter to the average of the squared diameter, the stand arithmetic mean diameter, and the mean of the difference of temperature was significantly negatively correlated. Our results will have significant implications in identifying various factors, including climate, that could have large influence on tree mortality and precisely predict tree mortality at different scales.

Funder

the National Natural Science Foundations of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3