Feasibility Study of Grinding Circulating Fluidized Bed Ash as Cement Admixture

Author:

Du XingquanORCID,Huang Zhong,Ding Yi,Xu Wei,Zhang Man,Wei Lubin,Yang Hairui

Abstract

With the widespread application of circulating fluidized bed (CFB) combustion technology, the popularity of CFB ash (CFBA) has increased dramatically and its production and large-scale utilization have become increasingly important. In the context of carbon neutrality peaking, using CFBA as a cement admixture as an effective method of resource utilization not only reduces the pressures caused by carbon emissions in the cement industry but also solves the environmental problems caused by CFBA depositing. However, the formation conditions of CFBA are worse than those of traditional pulverized coal boilers. CFB ash is the combustion product of coal at 850 °C–950 °C, and the characteristics of CFBA usually include a loose and porous structure with many amorphous substances. Furthermore, it has the disadvantages of large particle size, high water-demand ratio, and low activity index when it is directly used as a cement admixture. In this study, CFBA (including fly ash (CFBFA) and bottom ash (CFBBA)) produced by a CFB boiler without furnace desulfurization with limestone was used as a cement admixture material, and the effect of grinding on the fineness, water-demand ratio, and activity index of CFBA were studied. The experimental results showed that the grinding effect could significantly reduce the fineness and water-demand ratio of CFBA as a cement mixture and improve the activity index. With the increase in the grinding time, the water-demand ratio of CFBA first decreased and then increased. CFBBA ground for 10 min and CFBFA ground for 4 min can reduce the water-demand ratio of CFBA by up to 105% and increase the compressive strength of 28-day-old CFBA cement by 7.05%. The grinding process can ensure that CFBA meets the Chinese standards for a cement admixture and realize the resource utilization of CFBA.

Funder

National Key Research Plan

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3