Author:
Han Weiwei,Han Fanghui,Zhang Ke
Abstract
Copper and zinc tailing powder (CZTP) is finely ground waste after copper minerals and zinc minerals have been extracted from ores during beneficiation. CZTP has certain potential cementitious properties and can be used in composite cementitious materials. The pore size distribution and hydrate phase assemblage of the hardened samples are investigated using MIP and XRD. SEM is employed to examine the microstructure of the specimens. The chemically bonded water is used to measure the degree of hydration. CZTP lowers the hydration heat evolution rate and the total hydration heat. The hydration heat evolution rate reduces as the w/b ratio rises, whereas the total hydration heat of blended cement paste rises. CZTP diminishes the strength development of the Portland-CZTP system, and the strength decreases as the CZTP level increases. CZTP reduces the critical pore diameters of the Portland-CZTP system with w/b = 0.3 after curing for 3 d and 28 d, while increasing the critical pore diameters of samples with w/b = 0.45 at the same age. CZTP increases the gel micropores of Portland-CZTP. Although CZTP increases the pore volume content of blended cement pastes with w/b = 0.3, the volume of harmful pores decreases. The pore volume content of the Portland-CZTP system decreases as the w/b ratio increases. However, the volume of harmful pores increases with a higher w/b ratio. The main hydration products in the Portland-CZTP system are portlandite, ettringite, and C-S-H. CZTP mainly played the role of filling or acting as a microaggregate in the Portland-CZTP system.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献