Friction Modelling for Tube Hydroforming Processes—A Numerical and Experimental Study with Different Viscosity Lubricants

Author:

Galdos LanderORCID,Trinidad Javier,Otegi Nagore,Garcia Carlos

Abstract

The final quality of sheet and tube metal–formed components strongly depends on the tribology and friction conditions between the tools and the material to be formed. Furthermore, it has been recently demonstrated that friction is the numerical input parameter that has the biggest effect in the numerical models used for feasibility studies and process design. For these reasons, industrial dedicated software packages have introduced friction laws which are dependent on sliding velocity, contact pressure and sometimes strain suffered by the sheet, and currently, temperature dependency is being implemented as it has also a major effect on friction. In this work, three lubricants having different viscosity have been characterized using the tube-sliding test. The final aim of the study is to fit friction laws that are contact pressure and sliding velocity dependent for their use in tube hydroforming modeling. The tests performed at various contact pressures and velocities have demonstrated that viscosity has a major effect on friction. Experimental hydroforming tests using the three different lubricants have corroborated the importance of the lubricant in the final forming of a triangular shape. The measurement of the axial forces and the final principal strains of the formed tubes have shown the importance of using advanced friction laws to properly model the hydroforming process using the finite element modeling.

Publisher

MDPI AG

Subject

General Materials Science

Reference40 articles.

1. Metal Forming Handbook,1998

2. Hydroforming: Needs, developments and perspectives;Vollertsen;Proceedings of the 6th International Conference on Technology of Plasticity,1999

3. Recent developments in hydroforming technology

4. Tube hydroforming: state-of-the-art and future trends

5. A study on experimental benchmarks and simulation results in sheet metal forming

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3