Coupled Effect of Polypropylene Fibers and Slag on the Impact Resistance and Mechanical Properties of Concrete

Author:

Ali Abdul BasitORCID,Sharif Muhammad BurhanORCID,Irfan-ul-Hassan MuhammadORCID,Iqbal Yasir,Akmal UsmanORCID,Alabduljabbar Hisham,Deifalla Ahmed FaroukORCID

Abstract

The disposal of steel slag leads to the occupation of large land areas, along with many environmental consequences, due to the release of poisonous substances into the water and soil. The use of steel slag in concrete as a sand-replacement material can assist in reducing its impacts on the environment and can be an alternative source of fine aggregates. This is the very first paper that seeks to experimentally investigate the cumulative effect of steel slag and polypropylene fibers, particularly on the impact resistance of concrete. Various concrete mixes were devised by substituting natural sand with steel slag at volumetric replacement ratios of 0%, 10%, 20%, 30%, and 40%, with and without fibers. Polypropylene fibers of 12 mm length were introduced into the steel slag concrete at 0%, 0.5%, and 1.0% by weight of cement as a reinforcing material. Performance evaluation of each mix through extensive experimental testing indicated that the use of steel slag as partial substitution of natural sand, up to a certain optimum replacement level of 30%, considerably improved the compressive strength, flexural strength, and tensile strength of the concrete by 20.4%, 23.8%, and 17.0%, respectively. Furthermore, the addition of polypropylene fibers to the steel slag concrete played a beneficial role in the improvement of strength characteristics, particularly the flexural strength and final drop weight impact energy, which had a maximum rise of 48.1% and 164%, correspondingly. Moreover, integral structure and analytical analyses have also been performed in this study to validate the experimental findings. The results obtained encourage the use of fiber-reinforced steel slag concrete (FRSLC) as a potential impact-resistant material considering the environmental advantages, with the suggested substitution, of an addition ratio of 30% and 1.0% for steel slag and polypropylene fibers, respectively.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3