Trusted Operation of Cyber-Physical Processes Based on Assessment of the System’s State and Operating Mode

Author:

Basan Elena1ORCID,Basan Alexandr1,Nekrasov Alexey1ORCID,Fidge Colin2ORCID,Ishchukova Evgeniya1ORCID,Basyuk Anatoly1,Lesnikov Alexandr1

Affiliation:

1. Institute for Computer Technologies and Information Security, Southern Federal University, Chekhova 2, 347922 Taganrog, Russia

2. Faculty of Science, Queensland University of Technology (QUT), Gardens Point Campus, Brisbane, QLD 4001, Australia

Abstract

We consider the trusted operation of cyber-physical processes based on an assessment of the system’s state and operating mode and present a method for detecting anomalies in the behavior of a cyber-physical system (CPS) based on the analysis of the data transmitted by its sensory subsystem. Probability theory and mathematical statistics are used to process and normalize the data in order to determine whether or not the system is in the correct operating mode and control process state. To describe the mode-specific control processes of a CPS, the paradigm of using cyber-physical parameters is taken as a basis, as it is the feature that most clearly reflects the system’s interaction with physical processes. In this study, two metrics were taken as a sign of an anomaly: the probability of falling into the sensor values’ confidence interval and parameter change monitoring. These two metrics, as well as the current mode evaluation, produce a final probability function for our trust in the CPS’s currently executing control process, which is, in turn, determined by the operating mode of the system. Based on the results of this trust assessment, it is possible to draw a conclusion about the processing state in which the system is operating. If the score is higher than 0.6, it means the system is in a trusted state. If the score is equal to 0.6, it means the system is in an uncertain state. If the trust score tends towards zero, then the system can be interpreted as unstable or under stress due to a system failure or deliberate attack. Through a case study using cyber-attack data for an unmanned aerial vehicle (UAV), it was found that the method works well. When we were evaluating the normal flight mode, there were no false positive anomaly estimates. When we were evaluating the UAV’s state during an attack, a deviation and an untrusted state were detected. This method can be used to implement software solutions aimed at detecting system faults and cyber-attacks, and thus make decisions about the presence of malfunctions in the operation of a CPS, thereby minimizing the amount of knowledge and initial data about the system.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Smart manufacturing: Past research, present findings, and future directions;Kang;Int. J. Precis. Eng. Manuf.-Green Technol.,2016

2. Digital twin in industry: State-of-the-art;Tao;IEEE Trans. Ind. Inform.,2018

3. A survey and analysis of research on digital twin in Korea;Choi;Korean J. Comput. Des. Eng.,2021

4. Trust quantification for networked cyber-physical systems;Wang;IEEE Internet Things J.,2018

5. A systems and control perspective of CPS security;Dibaji;Annu. Rev. Control,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Multiple Role Evaluation Fusion-Based Trust Management Framework in Blockchain-Enabled 6G Network;Sensors;2023-07-28

2. Decision-Making Module to Improve the Stability of the UAV Flight;Proceedings of the Seventh International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’23);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3