Maternal Vitamin C Intake during Pregnancy Influences Long-Term Offspring Growth with Timing- and Sex-Specific Effects in Guinea Pigs

Author:

Coker Sharna J.1,Berry Mary J.1ORCID,Vissers Margreet C. M.2ORCID,Dyson Rebecca M.1

Affiliation:

1. Perinatal and Developmental Physiology Group, Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand

2. Mātai Hāora-Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand

Abstract

Our previous work in guinea pigs revealed that low vitamin C intake during preconception and pregnancy adversely affects fertility, pregnancy outcomes, and foetal and neonatal growth in a sex-dependent manner. To investigate the long-term impact on offspring, we monitored their growth from birth to adolescence (four months), recorded organ weights at childhood equivalence (28 days) and adolescence, and assessed physiological parameters like oral glucose tolerance and basal cortisol concentrations. We also investigated the effects of the timing of maternal vitamin C restriction (early vs. late gestation) on pregnancy outcomes and the health consequences for offspring. Dunkin Hartley guinea pigs were fed an optimal (900 mg/kg feed) or low (100 mg/kg feed) vitamin C diet ad libitum during preconception. Pregnant dams were then randomised into four feeding regimens: consistently optimal, consistently low, low during early pregnancy, or low during late pregnancy. We found that low maternal vitamin C intake during early pregnancy accelerated foetal and neonatal growth in female offspring and altered glucose homeostasis in the offspring of both sexes at an age equivalent to early childhood. Conversely, low maternal vitamin C intake during late pregnancy resulted in foetal growth restriction and reduced weight gain in male offspring throughout their lifespan. We conclude that altered vitamin C during development has long-lasting, sex-specific consequences for offspring and that the timing of vitamin C depletion is also critical, with low levels during early development being associated with the development of a metabolic syndrome-related phenotype, while later deprivation appears to be linked to a growth-faltering phenotype.

Funder

Royal Society Te Apārangi

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3