The Method of Mass Estimation Considering System Error in Vehicle Longitudinal Dynamics

Author:

Lin Nan,Zong Changfu,Shi ShumingORCID

Abstract

Vehicle mass is a critical parameter for economic cruise control. With the development of active control, vehicle mass estimation in real-time situations is becoming notably important. Normal state estimators regard system error as white noise, but many sources of error, such as the accuracy of measured parameters, environment and vehicle motion state, cause system error to become colored noise. This paper presents a mass estimation method that considers system error as colored noise. The system error is considered an unknown parameter that must be estimated. The recursive least squares algorithm with two unknown parameters is used to estimate both vehicle mass and system error. The system error of longitudinal dynamics is analyzed in both qualitative and quantitative aspects. The road tests indicate that the percentage of mass error is 16%, and, if the system error is considered, the percentage of mass error is 7.2%. The precision of mass estimation improves by 8.8%. The accuracy and stability of mass estimation obviously improves with the consideration of system error. The proposed model can offer online mass estimation for intelligent vehicle, especially for heavy-duty vehicle (HDV).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3