Abstract
The inherently variable nature of renewable energy sources makes them storage-dependent when providing a reliable and continuous energy supply. One feasible energy-storage option that could meet this challenge is storing surplus renewable energy in the form of hydrogen. In this context, storage of hydrogen electrochemically in porous carbon-based electrodes is investigated. Measurements of hydrogen storage capacity, proton conductivity, and capacitance due to electrical double layer of several porous activated carbon electrodes are reported. The hydrogen storage capacity of the tested electrodes is found in the range of 0.61−1.05 wt.%, which compares favorably with commercially available metal hydride-based hydrogen storage, lithium polymer batteries, and lithium ion batteries in terms of gravimetric energy density. The highest obtained proton conductivity was 0.0965 S/cm, which is near to that of the commercial polymer-based proton conductor, nafion 117, under fully hydrated conditions. The obtained capacitance due to double-layers of the tested electrodes was in the range of 28.3–189.4 F/g. The relationship between specific surface area, micropore volume and hydrogen storage capacity of the carbon electrodes is discussed. The contribution of capacitance to the equivalent hydrogen storage capacity of carbon electrodes is reported. The implications of the obtained experimental results are discussed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献