A Review of Artificial Intelligence and Machine Learning for Incident Detectors in Road Transport Systems

Author:

Olugbade Samuel,Ojo StephenORCID,Imoize Agbotiname LuckyORCID,Isabona JosephORCID,Alaba Mathew O.

Abstract

Road transport is the most prone to accidents, resulting in significant fatalities and injuries. It also faces a plethora of never-ending problems, such as the frequent loss of lives and valuables during an accident. Appropriate actions need to be taken to address these problems, such as the establishment of an automatic incident detection system using artificial intelligence and machine learning. This article explores the overview of artificial intelligence and machine learning in facilitating automatic incident detector systems to decrease road accidents. The study examines the critical problems and potential remedies for reducing road traffic accidents and the application of artificial intelligence and machine learning in road transportation systems. More, new, and emerging trends that reduce frequent accidents in the transportation sector are discussed extensively. Specifically, the study organized the following sub-topics: an incident detector with machine learning and artificial intelligence and road management with machine learning and artificial intelligence. Additionally, safety is the primary concern of road transport; the internet of vehicles and vehicle ad hoc networks, including the use of wireless communication technologies such as 5G wireless networks and the use of machine learning and artificial intelligence for road transportation systems planning, are elaborated. Key findings from the review indicate that route optimization, cargo volume forecasting, predictive fleet maintenance, real-time vehicle tracking, and traffic management are critical to safeguarding road transportation systems. Finally, the paper summarizes the challenges facing the application of artificial intelligence in road transport systems, highlights the research trends, identifies the unresolved questions, and highlights the essential research takeaways. The work can serve as reference material for road transport system planning and management.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Reference129 articles.

1. Arterial Intelligent Transportation Systems: Infrastructure Elements and Traveler Information Requirements;Walton,2009

2. A Real-Time Traffic Condition Assessment and Prediction Framework Using Vehicle-Infrastructure Integration (VII) with Computational Intelligence;Ma;Ph.D. Thesis,2008

3. Fuzzy Logic-based Incident Detection System using Loop Detectors Data

4. Disruption Innovation and Theory

5. Framework for disruptive AI/ML Innovation;Verleyen;arXiv,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3