CSVO: Clustered Sparse Voxel Octrees—A Hierarchical Data Structure for Geometry Representation of Voxelized 3D Scenes

Author:

Madoš BranislavORCID,Chovancová EvaORCID,Chovanec MartinORCID,Ádám NorbertORCID

Abstract

When representing the geometry of voxelized three-dimensional scenes (especially if they have been voxelized to high resolutions) in a naive—uncompressed—form, one may end up using vast amounts of data. These can easily attack the available memory capacity of the graphics card, the operating memory or even secondary storage of computer. A viable solution to this problem is to use domain-specific hierarchical data structures, based on octant trees or directed acyclic graphs, which, among other advantages, provide a compact binary representation that can thus be considered to be their compressed encoding. These data structures include—inter alia—sparse voxel octrees, sparse voxel directed acyclic graphs and symmetry-aware sparse voxel directed acyclic graphs. The paper deals with the proposal of a new domain-specific hierarchical data structure: the clustered sparse voxel octrees. It is designed to represent the geometry of voxelized three-dimensional scenes and can be constructed using the out-of-core algorithm proposed in the paper. The advantage of the presented data structure is in its compact binary representation, achieved by omitting a significant number of pointers to child nodes (82.55% in case of Angel Lucy model in 1283 voxels resolution) and by using a wider range of child node pointer lengths, including 8b, 16b and 32b. We achieved from 6.57 to 6.82 times more compact encoding, compared to sparse voxel octrees, whose all node components were 32b aligned, and from 4.11 to 4.27 times more compact encoding, when not all node components were 32b aligned.

Funder

Operational Program Integrated Infrastructure within project: Research in the SANET Network and Possibilities of Its Further Use and Development

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference27 articles.

1. State-of-the-Art in Compressed GPU-Based Direct Volume Rendering

2. Space-Filling Curves

3. A Computer Oriented Geodetic Data Base and a New Technique in File Sequencing;Morton,1966

4. Via the Continuous Mapping of a Line onto a Patch of Area (Über die stetige Abbildung einer Linie auf ein Flächenstück). Dritter Band: Analysis Grundlagen der Mathematik Physik Verschiedenes;Hilbert,1935

5. Efficient sparse voxel octrees

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3