Abstract
A widely used method that constructs features with the incorporation of so-called grammatical evolution is proposed here to predict the COVID-19 cases as well as the mortality rate. The method creates new artificial features from the original ones using a genetic algorithm and is guided by BNF grammar. After the artificial features are generated, the original data set is modified based on these features, an artificial neural network is applied to the modified data, and the results are reported. From the comparative experiments done, it is clear that feature construction has an advantage over other machine-learning methods for predicting pandemic elements.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献